Mathematical methods in physics - Lagrange and Hamilton mechanics

Homework No. 1, 04.12.2023

Deadline: 18.11.2023, 09:20
where: during the lecture or mail to klawe@math.uni-heidelberg.de
Definition. The unite vector:

$$
\begin{equation*}
\vec{b}=\vec{t} \times \vec{n}, \tag{0.1}
\end{equation*}
$$

is called a binormal unite vector. The triple of vectors $(\vec{t}, \vec{n}, \vec{b})$ is orthonormal. (\vec{t} is a unite tangent and \vec{n} is a unite normal vector.)
Theorem. (Frenet) Let $s \rightarrow \vec{x}(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)^{T}$ be a curve in \mathbb{R}^{3} endowed with the natural parametrisation. Then the following equations hold:

$$
\begin{align*}
& \frac{d \vec{t}}{d s}=\kappa(s) \vec{n}(s), \\
& \frac{d \vec{n}}{d s}=-\kappa(s) \vec{t}(s)-\chi(s) \vec{b}(s), \tag{0.2}\\
& \frac{d \vec{b}}{d s}=\chi(s) \vec{n}(s),
\end{align*}
$$

where $\chi(s)$ is called the torsion (or second curvature) of the curve.

1. Prove Frenet theorem for curve in \mathbb{R}^{3}.
2. A point particle of unite mass is moving along the x-axis under the action of a conservative force with potential

$$
V(x)= \begin{cases}(x+1)^{2}, & \text { if } x \leq-1 \tag{0.3}\\ 0, & \text { if }-1<x<-1 \\ (x-1)^{2}, & \text { if } 1<x\end{cases}
$$

Draw the phase curve corresponding to the values $E=0, \frac{1}{2}, 1$. Prove that the period T of the motion corresponding to a fixed value $E>0$ of the system energy is

$$
\begin{equation*}
T=2 \pi\left(\frac{1}{\sqrt{2}}+\frac{1}{\pi} \sqrt{\frac{2}{E}}\right) . \tag{0.4}
\end{equation*}
$$

3. Consider the spiral of Archimedes:

$$
\begin{align*}
& x_{1}(t)=r t \cos t, \\
& x_{2}(t)=r t \sin t, \tag{0.5}
\end{align*}
$$

and compute the velocity, acceleration, natural parametrisation, unite normal and tangent vector and curvature.

