MATHEMATICS OF SELF-ORGANISATION IN CELL SYSTEMS
 
 
 
by Steffen Härting
by Moritz Mercker
by Moritz Mercker
by Steffen Härting
Completed Theses

Ph.D. Theses

Christian DüllGeneralising nonlinear population models - Radon measures, Polish spaces and the flat norm (2024)
Johannes KammererMathematical Modeling of the Nile Perch Fishery in LV (2024)
Chris KowallUniform Shadow Limit Reduction for Reaction-Diffusion-ODE Systems (2021)
Felix Brinckmann Mathematical models and numerical simulation of mechanochemical pattern formation in biological tissues (2019)
Diana-Patricia Danciu Mathematical modelling of stem cell dynamics during post-embryonic organ growth (2019)
Jan-Erik BusseAsymptotic behaviour of a system of integro-differential equations describing leukemia (2017)
Samuel CollaudinExploring the basis of robust AGAMOUS expression dynamics during flower development using a pluridisciplinary approach (2016)
Marcel MohrMathematical modelling of plasma cell dynamics in multiple myeloma (2016)
Przemysław PaździorekAsymptotic behaviour of stochastic models of steam cell differentiation (2016)
Steffen Härting Reaction-diffusion-ODE systems: de-novo formation of irregular patterns and model reduction (2016)
Frederik ZiebellMathematical modeling of neural stem cell dynamics in the adult hippocampus (2015)
Grzegorz JamrózStructured population models of cell differentiation (2015)
Thomas StiehlMathematical modeling of stem cell dynamics in acute leukemias (2014)
Joanna KawkaMathematical modeling of SGK1 dynamics in medulloblastoma tumor cells (2014)
Agnieszka UlikowskaStructured population models in metric spaces (2013)
Alexandra KötheHysteresis-driven pattern formation in Reaction-Diffusion-ODE models (2013)

Master Theses

Carolin Lindow Measure Solutions for a Structured Population Model of Neurogenesis (2023)
Lukas Martin HuberStability and Instability Results for Continuous Stationary Solutions of Reaction-Diffusion-ODE systems (2022)
Finn MünnichWell-posedness of a structured population model of leukemia evolution in spaces of measures (2022)
Sabrina PochabaPattern formation in a receptor-based model with two diffusive components (2021)
Giulia Chiari Mathematical modeling of feedback dynamics, cancer clonal selection and relapse in leukemia patients treated with chemotherapy (2020)
Annum Zulfiqar Turing instability in reaction-diffusion-ODE system (2019)
David Nohe Methods for Quasi-Stationary Reduction of Dynamical Systems (2018)
Shruti Setty Modeling the takeover of bone marrow by malignant plasma cells and the initiation of osteoporosis (2018)
Sarah LaurinatModelling and Analysis of Niche-Dependent Stem Cell Dynamics in Granulopoiesis (2018)
Verena Clarmann von ClarenauModelling of Feedback Mechanisms of Adult Neurogenesis in the Subventricular Zone (2018)
Christian DüllThe Space of Radon Measures under the Flat Norm (2018)
Markus AltClonal selection and oscillations in a hematopoietic model with three maturation stages (2018)
Zhoubin ManeshiA Case Study of the Dynamics of Turing Pattern Formation via the Activator-Inhibitor Reaction-Diffusion Systems (2017)
Chris KowallSolutions of coupled reaction-diffusion-ODE systems (2015)

Diploma Theses

Kristina ErbertTwo-compartment model of cell differentiation with symmetric and asymmetric stem cell division (2017)
Mareike JanßenContinuous dynamical model of spatial development of biological tissue (2013)
Franziska KnauerDynamical behaviour of a single feedback-controlled haematopoietic model (2012)
Steffen HärtingAnalysis and numerical simulation of the dynamics of pattern formation in a system of degenerated Reaction-Diffusion equations (2011)

Bachelor Theses

Rebekka FehlingAnalysis of mathematical models for stem cell dynamics in neurogenesis (2023)
Joseph HoltenCharacterizing the Space of Measures- The Theorems of Riesz & Prokhorov (2023)
Romy GabrielModelling Notch signalling in the freshwater polyp Hydra (2022)
Maria StickelAn evaluation of mathematical models of stem cell dynamics in neurogenesis (2022)
Henri SchmidtWasserstein distance estimation using machine learning (2022)
Maximilian KirchnerTuring-Muster und deren Sensibilität zu Anfangswerten anhand des Schnakenberg-Modells und seiner Linearisierung (2021)
Carolin LindowMathematical Modelling of White Blood Cells during Sepsis (2021)
Zimu WangApplications of ordinary differential equation to describe oscillations (2020)
Finn MünnichSpectral analysis of reaction-diffusion-ODE systems: Instability theorems (2020)
Robert FietzStabilitaetseigenschaften des FitzHugh-Nagumo-Modells (2019)
Lukas Martin HuberImbedding Theorems for Sobolev Spaces (2019)
Lars HelmstädterSpectral Decomposition of the Laplace Operator and its application in Turing Models (2017)
Aliosa MarjanovicIL-15 und mTOR-regulierte HIFalpha-Aktivität in natürlichen Killerzellen (2016)
Julian TeichgräberStationary solutions of reaction-diffusion systems (2016)
David NoheTikhonov Theorem with an application to the Michaelis-Menten kinetics (2015)
Philipp WalcherOrdinary differential equations based modelling of leukaemia (2015)
Alexander PorembaBlow-up in Reaction-Diffusion equations on bounded domains (2015)
Friederike KreplinDynamische Systeme mit S- und Z-förmiger Hysterese (2014)