MATHEMATICS OF SELF-ORGANISATION IN CELL SYSTEMS
 
 
 
by Steffen Härting
by Moritz Mercker
by Moritz Mercker
by Steffen Härting
Vorlesung

Nichtlineare Partielle Differentialgleichungen

In diesem Kurs wird die Existenztheorie nichtlineare partielle Differentialgleichungen betrachtet. Dazu werden die Fixpunktsätze von Banach, Schauder, Brouwer und Leray-Schauder eingeführt um die Existenz von seminlinearen elliptischen und parabolischen Gleichungen herzuleiten. Außerdem werden anhand von Reaktions-Diffusionsgleichungen Monotoniemethoden veranschaulicht. Ein weiterer Aspekt werden Euler-Lagrange Gleichungen sein, die aus Variationsansätzen auf natürliche Weise hervorgehen. In diesem Zusammenhang werden kompakte Einbettungen ein wichtiges Werkzeug sein um Existenzaussagen zu erhalten. Diese Methoden können dann auf die Navier-Stokes Gleichung und die nichtlineare Diffusionsgleichung angewandt werden. Ebenso werden Blow-up Phänomene und Nichtexistenz von Lösungen besprochen.
Vorlesung
Dozentin: Prof. Anna Marciniak-Czochra
Wann: Dienstag und Donnerstag von 09-11 Uhr
Wo: HS -104, INF 294.
Übungsgruppen und Prüfung
Die Übungsgruppentermine werden zu Vorlesungsbeginn festgelegt.